Note

On an Approximation Theorem of Walsh in the p-Adic Field

V. K. SRINIVASAN AND CAM VAN TRAN

Department of Mathematics, University of Texas, El Paso, Texas 79968, USA

Communicated by R. Bojanic

Received April 15, 1981

The works of Bachman [2], Ahlswede and Bojanic [1], Bojanic [3], Dieudonné [5], Koblitz [6] and Mahler [7] bring out many of the similarities as well as the dissimilarities between analysis over the p-adic field Q_p and analysis over the real field R. If $Z_p = \{x \in Q_p/|x| \le 1\}$ and $f\colon Z_p \to Q_p$ is a continuous function, then it can be uniformly approximated by polynomials. The above result was originally proved by Dieudonné [5]. Subsequently, Mahler [7] gave constructive proof based on Newton's interpolation formula. A very short proof of the above result was later given by Bojanic [3]. Ahlswede and Bojanic [1] also addressed themselves to such issues as best polnomial approximation. In this short note we prove the p-adic analogue of Walsh approximation theorem which is as follows:

THEOREM 1. Let $f: \mathbb{Z}_p \to \mathbb{Q}_p$ be continuous. Let $x_1, x_2, ..., x_m$ be a set of m distinct p-adic integers. Then f is uniformly approximable by polynomials h^* that satisfy

$$h^*(x_k) = f(x_k), \qquad k = 1, 2, ..., m.$$
 (1)

Proof. Let $f_N(x)$ be any sequence of polynomials that approximates f uniformly on Z_p . In view of Mahler's theorem, we can take, for instance,

$$f_{N}(x) = \sum_{k=0}^{N} a_{k}(f) \begin{pmatrix} x \\ k \end{pmatrix}, \tag{2}$$

where

$$a_n(f) = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} f(k).$$
 (3)

For any $t \in J$, choose $N_t \in J$ such that

$$|f(x) - f_N(x)|_p \leqslant p^{-t} \tag{4}$$

for any $n \ge N_t$ and $x \in \mathbb{Z}_p$. Let $x_1, x_2, ..., x_m$ be m distinct points in \mathbb{Z}_p and

$$l_{k,m}(x) = \prod_{\substack{i=1\\i\neq k}}^{m} \frac{x - x_i}{x_k - x_i}, \qquad k = 1, 2, ..., m,$$
 (5)

be the fundamental polynomials of Lagrange interpolation. The polynomial

$$h_N(x) = \sum_{k=1}^{m} (f(x_k) - f_N(x_k)) l_{k,m}(x) + f_N(x),$$
 (6)

where $m \le N + 1$ clearly satisfies the conditions

$$h_N(x_i) = f(x_i), j = 1, 2, ..., m,$$
 (7)

and

$$|h_N(x) - f(x)|_p \le p^{-t} \{ 1 + \max_{\substack{t \in \mathbb{Z}_p \\ 1 < k < m}} |l_{k,m}(x)|_p \}.$$
 (8)

To estimate $|l_{k,m}(x)|_p$ it is sufficient to observe that $|x-x_i|_p\leqslant 1$ for all $x\in Z_p$ and that

$$\min\{|x_i - x_i|_p : 1 \le i, j \le m, i \ne j\} = p^{-M}$$
(9)

for some $M \in J$. Hence

$$|l_{k,m}(x)|_p \leqslant \prod_{\substack{i=1\\i\neq k}}^m \leqslant p^{mM}. \tag{10}$$

Using this estimate we obtain from (8) that

$$|h_N(x) - f(x)| \le p^{-t + mM}$$
, for all $x \in Z_p$ and $n \ge N_t$, (11)

and thus the theorem is proved.

ACKNOWLEDGMENT

The authors would like to thank Professor R. Bojanic for his suggestions, which simplified the proof considerably.

NOTE 193

REFERENCES

- 1. R. AHLSWEDE AND R. BOJANIC, Approximation of continuous functions in p-adic analysis. J. Approx. Theory 15 (1975), 190-205.
- 2. G. BACHMAN, "Introduction to p-Adic Analysis and Valuation Theory," Academic Press, New York, 1964.
- 3. R. BOJANIC, A simple proof of Mahler's theorem on the approximation of functions of a padic variable by polynomials, J. Number Theory 6 (1974), 412-415.
- 4. F. Bruhat, Lectures on some aspects of p-adic analysis, TIFR Lecture Notes, Bombay, 1963.
- 5. J. DIEUDONNÉ, Sur les fonctions continues p-adiques, Bull. Sci. Math. 68(2) (1944), 79-95.
- 6. N. Koblitz, "p-Adic Numbers, p-Adic Analysis and Zeta-Functions," Graduate Texts in Mathematics, No. 58, Springer-Verlag, Heidelberg, 1977.
- 7. K. MAHLER, "p-Adic Numbers and Their Functions," Cambridge tracts in Mathematics, No. 76, Cambridge Univ. Press, London/New York, 1981.