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The works of Bachman [2], Ahlswede and Bojanic II], Bojanic [3],
Dieudonne [5], Koblitz [6] and Mahler [7] bring out many of the
similarities as well as the dissimilarities between analysis over the p-adic
field Qp and analysis over the real field R. If Zp = {x E Qp/lxl ~ 1} and
f: Zp -+ Qp is a continuous function, then it can be uniformly approximated
by polynomials. The above result was originally proved by Dieudonne [5].
Subsequently, Mahler [7] gave constructive proof based on Newton's inter
polation formula. A very short proof of the above result was later given by
Bojanic [3]. Ahlswede and Bojanic [1] also addressed themselves to such
issues as best polnomial approximation. In this short note we prove the p
adic analogue of Walsh approximation theorem which is as follows:

THEOREM 1. Let f: Zp -+ Qp be continuous. Let x p X 2 , ••" x m be a set of
m distinct p-adic integers, Then f is uniformly approximable by polynomials
h* that satisfy

k= 1, 2,...,m. (1)

Proof Let fN(X) be any sequence of polynomials that approximates f
uniformly on Zp. In view of Mahler's theorem, we can take, for instance,

where

an(f) = ~o (_l)n-k ( ~ )f(k).
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(3)
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For any t E J, choose Nt E J such that

(4 )

for any n ~ Nt and x E Zp. Let xi' x 2 ' ••• , Xm be m distinct points in Zp and

k= 1,2,... , m, (5)

be the fundamental polynomials of Lagrange interpolation. The polynomial

m

hN(x) = L (f(xk) - fN(Xk)) lk.m(x) +fN(X),
k~l

where m ~ N + 1 clearly satisfies the conditions

(6)

j= 1, 2,... , m, (7)

and

IhN(X)-f(x)lp~p-t{l+ max Ilk m(x)lp}.
tez

p
,

l<k<m

(8)

To estimate Ilk,m(x)lp it is sufficient to observe that IX-Xilp~1 for all
x E Zp and that

for some M E J. Hence

m

Ilk,m(x)lp ~ n ~pmM.
i~l

i*k

Using this estimate we obtain from (8) that

(9)

(10)

for all x E Z p and n~ Nt' (11 )

and thus the theorem is proved.
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